Energy Performance Certificate

. Lord John House, Waterloo Street, STOKE-ON-TRENT, ST1 3PW

Dwelling type:

Detached house

Reference number:

0578-5067-7318-5633-0910

Date of assessment:

03 August 2017

Type of assessment:

SAP, new dwelling

Date of certificate:

03 August 2017

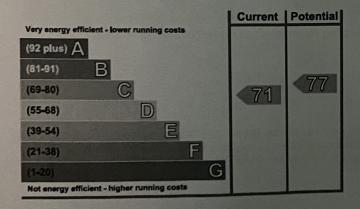
Total floor area:

310 m²

Use this document to:

Compare current ratings of properties to see which properties are more energy efficient

Find out how you can save energy and money by installing improvement measures


Estimated energy costs of dwelling for 3 years:	£ 5,940
Over 3 years you could save	£ 459

Estimated energy costs of this home

	Current costs	Potential costs	Potential future savings		
Lighting	£ 393 over 3 years	£ 393 over 3 years			
Heating	£ 4,566 over 3 years	£ 4,569 over 3 years	You could		
Hot Water	£ 981 over 3 years	£ 519 over 3 years	save £ 459		
Totals	£ 5,940	£ 5,481	over 3 years		

These figures show how much the average household would spend in this property for heating, lighting and hot water and is not based on energy used by individual households. This excludes energy use for running appliances like TVs, computers and cookers, and electricity generated by microgeneration.

Energy Efficiency Rating

The graph shows the current energy efficiency of your

The higher the rating the lower your fuel bills are likely to be.

The potential rating shows the effect of undertaking the recommendations on page 3.

The average energy efficiency rating for a dwelling in England and Wales is band D (rating 60).

The EPC rating shown here is based on standard assumptions about occupancy and energy use and may not reflect how energy is consumed by individual occupants.

take to save money and make your home more efficient

Recommended measures	Indicative cost	Typical savings over 3 years
1 Solar water heating	£4,000 - £6,000	£ 459
2 Solar photovoltaic panels, 2.5 kWp	£5,000 - £8,000	£ 831

Summary of this home's energy performance related features

Element	Description	Energy Efficienc	
Walls	Average thermal transmittance 0.50 w/m²k	★本意★☆	
Roof			
Floor	Average thermal transmittance 0.25 w/m²k	****	
Windows	High performance glazing	****	
Main heating	Boiler and radiators, mains gas	****	
Main heating controls	Programmer, room thermostat and trvs	****	
Secondary heating	None	_	
Hot water	Electric immersion, standard tariff	-	
Lighting	Low energy lighting in all fixed outlets	****	
Air tightness			

Thermal transmittance is a measure of the rate of heat loss through a building element; the lower the value the better the energy performance.

Current primary energy use per square metre of floor area: 164 kWh/m² per year

Low and zero carbon energy sources

Low and zero carbon energy sources are sources of energy that release either very little or no carbon dioxide into the atmosphere when they are used. Installing these sources may help reduce energy bills as well as cutting carbon. There are none provided for this home.

Your home's heat demand

This table shows the energy used for space and water heating by an average household in this property.

Heat demand

Hour deline		
Space heating (kWh per year)	28,336	
Water heating (kWh per year)	2,083	

If you built your own home and, as part of its construction, you installed a renewable heating system, you could receive Renewable Heat Incentive (RHI) payments. The estimated energy required for space and water heating will form the basis of the payments. For more information, search for the domestic RHI on the www.gov.uk website.

Recommendations

The measures below will improve the energy performance of your dwelling. The performance ratings after improvements listed below are cumulative; that is, they assume the improvements have been installed in the order could take today to save money is available at www.gov.uk/energy-grants-calculator. Before installing measures, include permission from your landlord (if you are a tenant) or approval under Building Regulations for certain types of work.

Recommended measures	Indicative cost	Typical savings per year	Rating after improvement	
Solar water heating	£4,000 - £6,000	£ 153		
Solar photovoltaic panels, 2.5 kWp	£5,000 - £8,000	£ 277	C77	

About this document and the data in it

This document has been produced following an energy assessment undertaken by a qualified Energy Assessor, accredited by Elmhurst Energy Systems Ltd. You can obtain contact details of the Accreditation Scheme at www.elmhurstenergy.co.uk.

A copy of this certificate has been lodged on a national register as a requirement under the Energy Performance of Buildings Regulations 2012 as amended. It will be made available via the online search function at www.epcregister.com. The certificate (including the building address) and other data about the building collected during the energy assessment but not shown on the certificate, for instance heating system data, will be made publicly available at www.opendatacommunities.org.

This certificate and other data about the building may be shared with other bodies (including government departments and enforcement agencies) for research, statistical and enforcement purposes. For further information about how data about the property are used, please visit www.epcregister.com. To opt out of having information about your building made publicly available, please visit www.epcregister.com/optout.

Assessor's accreditation number:

EES/005705

Assessor's name:

Jeffrey Hughes

Phone number: E-mail address:

0121 2366532

Related party disclosure:

jeff.hughes@jraltd.co.uk

re: No related party

There is more information in the guidance document Energy Performance Certificates for the marketing, sale and let of dwellings available on the Government website at:

www.gov.uk/government/collections/energy-performance-certificates. It explains the content and use of this

document, advises on how to identify the authenticity of a certificate and how to make a complaint.

About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions.

The average household causes about 6 tonnes of carbon dioxide every year. Based on this assessment, your home currently produces approximately 8.9 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. If you were to install these recommendations you could reduce this amount by 1.4 tonnes per year. You could reduce emissions even more by switching to renewable energy sources.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions based on standardised assumptions about occupancy and energy use. The higher the rating the less impact it has on the environment.

		Cur	rent rating 65			
G (1-20)	F (21-38)	(39-54)	D (55-68)	C (69-80)	B (81-91)	(92 plus)
Higher CO ₂ emis	sions		Potential rati	ng 70		Lower CO ₂ emissions